Use of Ca-alginate immobilized Pseudomonas aeruginosa for repeated batch and continuous degradation of Endosulfan

نویسندگان

  • Vijayalakshmi Pradeep
  • Usha Malavalli Subbaiah
چکیده

The current investigation is taken up with the aim of studying repeated batch and continuous degradation of Endosulfan, using Ca-alginate immobilized cells of Pseudomonas aeruginosa isolated from an agricultural soil. The work involves the study of genes and enzymes involved in the degradation of the pesticide and was carried out with an objective of reducing the toxicity of Endosulfan by degrading it to less toxic metabolites. The long-term stability of Endosulfan degradation was studied during its repeated batch degradation, carried out over a period of 35 days. Immobilized cells of Ps. aeruginosa were able to show 60 % degradation of Endosulfan at the end of the 35th cycle with a cell leakage of 642 × 104 Cfu/mL. During continuous treatment, with 2 % concentration of Endosulfan, 100 % degradation was recorded up to 100 mL/h flow rate and with 10 % concentration of the Endosulfan, and 100 and 85 % degradation was recorded at 20 mL/h flow rate and 100 mL/h flow rate, respectively. After degradation of Endosulfan, products were extracted from a large amount of spent medium using two volumes of ethyl acetate and subjected to the LC-MS analysis. Endosulfan lactone and Endosulfan ether were the products of degradation detected by the LCMS analysis. Plasmid curing experiments indicated that genes responsible for the degradation of Endosulfan are present on the chromosome and not on the plasmid, as growth of Ps. aeruginosa was observed on modified non-sulfur medium with Endosulfan after the plasmid was cured with ethidium bromide. The results of PCR indicated that there is no amplified product of ~1350 bp expected for esd gene, in Ps. aeruginosa, although there were some non-specific bands. Enzymatic degradation studies indicated that the enzymes involved in the degradation of Endosulfan are intracellular. With this investigation, it was indicated that immobilized cells of Ps. aeruginosa have the potential to be used in the bioremediation of water contaminated with Endosulfan.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable degradation of catechol by Pseudomonas sp. strain NGK1 encapsulated in alginate and polyurethane foam

Catechol is a terminal metabolite formed during the degradative pathways of various aromatic compounds, generally pollutants. Pseudomonas sp. strain NGK1 (NCIM 5120), a soil microbe, is capable of utilizing catechol as the carbon and energy source. This bacterium was encapsulated in alginate and polyurethane foam (PUF). The degradation rate of 20 and 40 mM of catechol in shaken batch cultures, ...

متن کامل

Bioaffinity Based Immobilization of Almond (Amygdalus communis) b-galactosidase on Con A-layered Calcium Alginate-cellulose Beads: Its Application in Lactose Hydrolysis in Batch and Continuous Mode

In this study, immobilization of partially purified almond (Amygdalus communis) β-galactosidase on Con A layered calcium alginate-cellulose beads was investigated. Immobilized β-galactosidase retained 72% of theinitial activity after crosslinking by glutaraldehyde. Both soluble and immobilized enzyme exhibited the samepH and temperature optima at pH 5.5 and 50ºC, respectively. Howev...

متن کامل

Optimization of Lipase Immobilization

Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. In order to purify the enzyme, precipitation was done first, and then this lipase has been purified by Ion exchange Chromatography leading to 2.3-fold purification and 11.47% recovery. Lipase from P.aeruginosa was entrapped into Ca-alginate gel beads and effect of independent varia...

متن کامل

Purification and Characterization of Alginate Lyase from Mucoid Pseudomonas aeruginosa Strain 214

Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of infections in compromised patients. The ability of Pseudomonas aeruginosa to produce chronic infection is based in part on its ability to biosynthesis of biofilm, and alginate is the major polysaccharide in the synthesized biofilm. So alginate degradation is very essential in the dispersion of Pseudomonas aeruginosa bi...

متن کامل

Biodegradation of Linear Alkylbenzene Sulfonate (LAS) by Immobilized Pseudomonas sp

Anionic surfactants are the most widely exploited chemical surfactants, which are being incorporated into majority of detergents and cleaning products used for household and industrial applications. Linear alkylbenzene sulfonates (LAS) is one of the major xenobiotic anionic surfactants. Biodegradation is an effective process to reduce the amount of surfactants released in the environment. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016